wxCondition
User’s Guide
V. 2.10
2019-01-13
Demmery Software
#24 – 612 MacLaren Street
Ottawa ON K1R 5K9
CANADA
mizar64@gmail.com
INTRODUCTION
wxCondition is designed, basically, to manipulate the values in an input feed. Typically, it is used to ‘failover’ backup sensor data into the regular feed, when needed.
wxCondition is capable of being run in three different modes. One captures data from a ‘donor’ feed (backup sensors, for example) and sets is aside for later. Another mode takes the donor data already recorded, and applies it to the source data according to a set of rules which you specify. It also adds in any pending manual readings. The third mode does nothing with the source or donor data, other than to inject any pending manual readings.
There is no initialization file for wxCondition. It expects data files to be in the current folder, and will output to the current folder.
Required Files
wxCondition looks for data files named according to the format: {LocCode}-Observations-{ShortDate}_ShortTime}.tx. This goes for donor or source files.

Example: CTO-Observations-20181216_1132.tx

It outputs files with identical names, save for the .tx is turned into .txt.

Example: CTO-Observations-20181216_1132.txt

The files must conform to the MCH Observations File format.
If your system is set up to receive manual readings, they can also be incorporated. In that case, your system should be generating files like {LocCode}-mccpending.txt.
Example: CTO-mccpending.txt
These should be copied into the wxCondition folder. They can either be incorporated during a subsequent wxCondition run with data substitution, or wxCondition can be run in an explicit, ‘add-manual-observations-only’ mode.
Syntax:
wxCondition -g {LocCode}
This causes wxCondition to read in observations from any files prefixed with the given location code, and memorize them. The input files will not otherwise be affected.
Example: wxCondition -g Alt
wxCondition -ps {LocCode}
This will causes wxCondition to look for any {LocCode}-mccpending.txt files and incorporate any non-nil values in the source data feed. This is automatically included in the third mode.
WxCondition -p [-pr O|A] {SourceLocCode} {DonorLocCode} {InstrStr}

The optional parameter -pr A or -pr O tells wxCondition which readings set to favour:

 -pr A – Favour the Alternate (Donor) readings; replace the source readings outright

 -pr O – Favour the Source readings (this is the default)

The parameter {SourceLocCode} is the Location code for your source readings.

Example: wxCondition -p CTO {DonorLocCode} {InstrStr}

The parameter {DonorLocCode} is the Location Code for your stored donor readings.

Example: wxCondition -p CTO Alt {InstrStr}

The instruction string is a little more complicated. It consists of

{Datum Stanza—two characters}

(Te, BP, RH, DP, Hx, Wn, WB, WG, Pr, Su)

{Disposition Instruction}

M = replace source with donor if source missing

 Possible uses: using backup values

U = replace source with donor unconditionally

 Possible uses: using backup value where source is always misreporting

H = replace source with donor, if donor is higher in value

 Possible uses: taking the higher of two temperature values, for example

L = replace source with donor, if donor is lower in value

 Possible uses: taking the lower of two temperature values, for example

E{value} = replace source with donor, if source value is equal to {value}

(remember: some source values may be multiplied by ten)

G{value} = replace source with donor, if source value is greater than {value}

(remember: some source values may be multiplied by ten)

S{Value} = replace source with donor, if source value is less than {value}

(remember: some source values may be multiplied by ten)

A{Value} = replace source with average of (source+donor)

P = Do no processing, other than preferences

{Separator character – any neutral character}

...
Take care in choosing your separator character, as several of the symbols have significance in command-line environments. Also, numerals are not permitted (for obvious reasons, as some instructions are followed by arguments).

Here are some examples:

TeM:RHU:BPL:PrH
(probably won’t work in DOS)

TeUxRHMxBPHxPrL (will work in all environments)

TeMaRHUbBPLcPrH (will work in all environments)

TeM#RHU#BPL#PrH (should work in all)

TeL0xRHG50xPrL500xBPG11500xWSA

Take care with your datum symbols, for they are case-sensitive.

An example, then, of a full command line:

Example: wxCondition -p CTO Alt TeM#RHU

A few notes:
Any time wxCondition modifies the values of Temperature, Relative Humidity, or Wind Velocity, any related values (Dew Point, Humidex, Wind Chill Index) are automatically recalculated. It is assumed that these values are in metric or related units, and anticipated scales (i.e. degrees celsius x 10, millibars x 10, kilometres per hour). If not, the calculations won’t work properly.
Operations involving preferences only affect affect those characters nominated for processing. If a datum is not mentioned in the instruction string, it will not be touched.
If you a running wxCondition on a loop, such as a recurring bash script, and you seem to be losing your data feed, check first for unprocessed .tx files in your wxCondition folder; if you find some, the chances are very good that you’ve got an error in your instruction string. If you run it manually, it will usually tell you what’s wrong.
You can have multiple locations for your donor feeds. Just process each separately. wxCondition will store the saved readings into separate files.
WxCondition is designed to store up to 1,000 of the latest readings from any donor location. This is to try to provide values which are accurate for a past timeframe. At the moment, it uses a linear search, based on the fact that it should usually be looking for the latest values, which come first in the list. In the rare event that your data feed is highly jumbled, this may become unacceptably slow, and will in that case be changed to binary search, which is lightning-fast.
And, as with all Demmery Software products, if you spot an inconsistency, or would like a new feature added, drop me a line: mizar64@gmail.com.
